SHORT COMMUNICATION Physical properties of aqueous solutions containing NaClO₃ and/or NaClO₄

L. J. J. JANSSEN

Faculty of Chemical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

 ν

Received 6 May 1993; revised 6 June 1994

Nomenclature

D_i	diffusion coefficient for species $i (m^2 s^{-1})$
$\Delta H_{\rm act}$	energy of activation $(J \text{ mol}^{-1})$
n _i	concentration of species <i>i</i> in mol kg ⁻¹
	water (<i>m</i> or molality) (mol kg ^{-1})
М	$n_{\rm ch} + n_{\rm pe}$ (dimensionless)
$N_{\rm ch}$	$n_{\rm ch}/M$ (dimensionless)
$N_{\rm pe}$	$n_{\rm pc}/M$ (dimensionless)
T^{r}	absolute temperature (K)
x_i	mass fraction of species i (dimensionless)

Greek	k symbols				
η	dynamic	viscosity	of	the	solution
	$(\text{kg s}^{-1} \text{m}^{-1})$	⁻¹)			

1. Introduction

Perchlorate is formed industrially by electrolysis of aqueous solutions containing high contents of sodium chlorate and sodium perchlorate [1]. Mass transfer of chlorate to the anode strongly affects the current efficiency for perchlorate formation [2]. To correlate experimental data on the mass transfer coefficient for chlorate in solutions of different compositions, the density and the dynamic viscosity for aqueous NaClO₃ and NaClO₄ solutions are required. In the literature only few data are known. No experimental data on the diffusion coefficient for chlorate in concentrated perchlorate solutions are available. To describe the mass transfer of ClO_3^- to a platinum anode under forced convection as a function of a large number of experimental variables, relations for solution density, kinematic viscosity, dynamic viscosity and diffusion coefficient for ClO_{2}^{-} are given. The data are important for continued research on chlorate oxidation and the optimization of perchlorate electrolysis.

2. Experimental details

Densities of solutions containing NaClO₃ and/or NaClO₄ were determined at various temperatures using a density meter (PAAR Precision Density meter, DMA 10). The density meter was calibrated with two different solutions, water and a 25 wt % aqueous solution of NaCl. Density data for these solutions are available [3, 4]. The measurement of the kinematic viscosity was carried out with a viscosimeter (Schott viscosimeter, type AVS 350). The kinematic viscosity of the solution $(m^{-2} s^{-1})$

ρ	density of the aqueous solution (kg m^{-3})	
$ ho_M$	density of a mixture of a NaClO ₃ and a	
	NaClO ₄ solution $(kg m^{-3})$	
$ ho_{\rm w}$	density of water (kgm^{-3})	
$\rho_{\rm ch}^{\dot{M}}$	density of a NaClO ₃ solution with a	
- Ch	NaClO ₃ concentration of M (kg m ^{-3})	
$\rho_{\rm ne}^M$	density of a NaClO ₄ solution with a	
, be	NaClO ₄ concentration of M (kg m ^{-3})	

Subscripts

ch chlorate ions or NaClO₃ fo $Fe(CN)_6^{4-}$ ions

pe perchlorate ions or NaClO₄

T absolute temperature

w water

measuring cell was a capillary cell (Ubbelohde, type 530, 10/I). The obtained results were related to the kinematic viscosity of pure water [3].

Experiments to determine the effect of the sodium perchlorate concentration on the diffusion coefficient of $Fe(CN)_6^{4-}$ ions were carried out in a thermostated three-compartment cell. The working electrode was a rotating platinum disc electrode of geometric surface area $0.50 \times 10^{-4} m^2$, the counter electrode a platinum plate electrode of a geometric surface area $5 \times 10^{-4} m^2$ and the reference electrode a saturated calomel electrode. The rotation speed of the working electrode was varied from 4 to 64 r.p.s. The potential/current curve was measured automatically using a potentioscan (working POS73) and recorded by an X-Y recorder (Philips PM8043). The potential scan rate was $10 mV s^{-1}$.

3. Results and discussion

3.1. Density

The densities of the binary systems H₂O-NaClO₃ and H₂O-NaClO₄ were obtained from literature data. For the H₂O-NaClO₄ system the most recent data over a wide range are given by Miller and Doran [5]. Relations between density and concentration in mol dm⁻³ at the temperature designated are presented for 0, 29.87 and 49.3° C. From these data it was found that a linear relationship between $\ln [(\rho - \rho_w/x_{pe}]]$ and T^{-1} exists and that the slope of the line is constant for the investigated range of NaClO₄ mass fraction, x_{pe} , i.e. from 0.05 to 0.4. Moreover, it was found that $(\rho - \rho_w)/x_{pe}$ increases

linearly with increasing x_{pe} . From the literature data it was obtained that

$$(\rho - \rho_{\rm w})_T = (0.632 x_{\rm pe} + 0.44 x_{\rm pe}^2)$$

 $\times \exp\left[-220\left(\frac{1}{T} - \frac{1}{298}\right)\right]$ (1)

The reliable data over a wide concentration range for the $H_2O-NaClO_3$ system were published by Campbell *et al.* [6].

Similarly, from experimental data at 25 and 35° C for H₂O–NaClO₃ solutions it was found that

$$(
ho -
ho_{\rm w})_T = (0.657 x_{\rm ch} + 0.40 x_{\rm ch}^2)$$

 $\times \exp\left[-130\left(\frac{1}{T} - \frac{1}{298}\right)\right]$ (2)

The density of a ternary system can be correlated to those of two suitable binary systems. The usefulness of the mixture rule has been investigated analogously to the mixture rule for viscosity [7]. The mixture rule for the density of the $H_2O-NaClO_3-NaClO_4$ system gives

$$\rho_{\rm M} = N_{\rm ch} \,\rho_{\rm ch}^M + N_{\rm pe} \,\rho_{\rm pe}^M \tag{3}$$

where $N_{\rm ch} = n_{\rm ch}/M$, $N_{\rm pe} = n_{\rm pe}/M$ and $M = n_{\rm ch} + n_{\rm pe}$.

To verify the mixture rule, the densities of 5.39 M NaClO₃, 5.39 M NaClO₄ and a mixed 3.76 M NaClO₃ + 1.63 M NaClO₄ solution were determined at 25, 35, 50 and 65° C. It was found that for both binary systems the experimental densities and the densities calculated from the derived equations agree reasonably. The difference between the results was about 0.2% of the experimental density. Moreover, for the ternary system the mixture rule gave good results. The difference between the experimental and calculated densities was smaller than 0.1% of the experimental density.

3.2. Kinematic viscosity

Experimental results are given in Table 1 for the binary systems $H_2O-NaClO_3$ and $H_2O-NaClO_4$

Table 1. Kinematic viscosity, ν , for H_2O , the binary systems $H_2O-NaClO_3$ and $H_2O-NaClO_4$ and the ternary system $H_2O-NaClO_3-NaClO_4$ at various temperatures

Weight fraction for water, $x_w = 1 - x_{ch} - x_{pe}$

x _{ch}	x _{pe}	$10^6 \nu/m^2 s^{-1}$				
		25° C	35° C	50° C	65° C	
_*	_	0.8904	0.7194	0.5468	0.4335	
0.0476	_	0.882	0.722	0.559	0.452	
0.1304	_	0.908	0.747	0.584	0.476	
0.3333	_	1.161	0.954	0.743	0.608	
_	0.05771	0.862	0.705	0.547	0.422	
_	0.1667	0.857	0.707	0.552	0.451	
_	0.286	0.911	0.751	0.590	0.483	
-	0.375	1.032	0.849	0.664	0.544	
0.125	0.250	1.115	0.908	0.708	0.580	
0.250	0.123	1.180	0.974	0.758	0.620	

* pure water.

and the ternary system $H_2O-NaClO_3-NaClO_4$.

If the kinematic viscosity is plotted against the concentration or weight fraction of the solute, the curves obtained for the $H_2O-NaClO_3$ and the $H_2O-NaClO_4$ solution show a clear minimum at 25° C. This minimum does not exist at 65° C.

It was found that for these systems plots of $\ln \nu$ against T^{-1} gave straight lines; the slope of the $\ln \nu/T^{-1}$ curve does not depend on the salt concentration and the slope of the $\ln \nu/T^{-1}$ curves is practically equal to the slope of the $\ln \nu_w/T^{-1}$ curve.

Similarly, the kinematic viscosity of the $H_2O-NaClO_3-NaClO_4$ system was correlated to those of both the binary systems, i.e. $H_2O-NaClO_3$ and $H_2O-NaClO_4$ system. According to the mixture rule the kinematic viscosity of the ternary system is given by

$$\nu_{\rm M} = N_{\rm ch} \nu_{\rm ch}^M + N_{\rm pe} \nu_{\rm pe}^M \tag{4}$$

It was found that, for two concentrated solutions of the $H_2O-NaClO_3-NaClO_4$ system at various temperatures, the experimental kinematic viscosity (Table 1) agrees well with the kinematic viscosity calculated by the mixture rule. The differences are smaller than about 0.5%.

3.3. Diffusion coefficient

The diffusion coefficient of chlorate ion in a perchlorate solution cannot be determined directly by measurement of potential-current curves owing to simultaneous side reactions. The ferrocyanide ion is often used to study mass transfer problems in electrochemistry. It was found that the potentialcurrent curves for the oxidation of $Fe(CN)_6^{3-}$ at a rotating platinum disc electrode in a NaClO₄ solution as supporting electrolyte were well shaped and showed a well defined limiting current for the oxidation of $Fe(CN)_6^{4-}$. From this limiting current the diffusion coefficient for $Fe(CN)_6^{4-}$, D_{fo} , was obtained as described in [8].

For the NaClO₄ solutions investigated the plots of $\ln D_{\rm fo}$ against T^{-1} gave straight lines. From the slopes the energy of activation for diffusion of Fe(CN)⁴⁻₆ ions ($\Delta H_{\rm act, fo}$) was calculated. It was found that $\Delta H_{\rm act, fo}$ does not depend on the NaClO₄ concentration and is equal to $12 \pm 1 \text{ kJ mol}^{-1}$. From $D_{\rm fo}$ at various temperatures and using $\Delta H_{\rm act, fo}$, the average value for $D_{\rm fo}$ at $T = 25^{\circ}$ C was calculated. This value for $D_{\rm fo}$ is much more reliable than $D_{\rm fo}$ from a single experiment. The estimated inaccuracy

Table 2. The diffusion coefficient for $Fe(CN)_{6}^{4-}$, D_{fo} , the dynamic viscosity of solution, η , and the factor of $D_{fo}\eta$ for various mass fractions of sodium perchlorate and at 25° C

x _{pe}	$10^{10} D_{\rm fo}/{\rm m}^2{\rm s}^{-1}$	$10^3 \eta/{\rm kg}{\rm m}^2{\rm s}^{-1}$	$10^{13} D_{\rm fo} \eta/{\rm kgms^{-2}}$	
0.05771	5.88	0.892	5.25	
0.1667	5.83	0.954	5.56	
0.2986	5.38	1.105	5.95	
0.375	4.64	1.337	6.20	

Fig. 1. Factor $D_{\rm fo}\,\eta$ as a function of mass fraction for NaClO₄, $x_{\rm pe},$ at 25° C.

in the average $D_{\rm fo}$ is about $0.1 \times 10^{-10} \,{\rm m}^2 \,{\rm s}^{-1}$. Table 2 shows the average $D_{\rm fo}$, the dynamic viscosity η of the relevant NaClO₄ solutions and the factor $D_{\rm fo} \eta$ at 25° C.

The factor $D_{fo}\eta$ at 25° C is plotted against the mass fraction of NaClO₄ in Fig. 1. This shows that $D_{fo}\eta$ increases linearly with increasing NaClO₄ mass fraction. This increase is caused by a decrease in the hydration number for Fe(CN)⁴⁻₆ in a NaClO₄ solution with increasing NaClO₄ concentration. Linear extrapolation of the $D_{fo}\eta/x_{pe}$ curve gives $D_{fo}\eta$ at $x_{pe} = 0$, $(D_{fo}\eta)_0$, i.e. 5.2×10^{-13} kg m s⁻², being the factor for the solution without supporting electrolyte, i.e. 5×10^{-3} M K₄Fe(CN)₆ solution. From the straight line it follows that at 25° C $D_{fo}\eta/(D_{fo}\eta)_0 =$ $1 + 0.48 x_{pe}$. Moreover, it was found that the temperature has practically no effect on the relation between $D_{fo}\eta/(D_{fo}\eta)_0$ and x_{pe} in the temperature range 25 to 65° C.

The ratio between the differential diffusion coefficient for $K_4Fe(CN)_6$ in a 5×10^{-3} M $K_4Fe(CN)_6$ solution and that in infinite dilution at 25° C is 0.80 [9]. Using D_{fo} in infinite dilution, i.e. 7.4×10^{-10} m² s⁻¹ at 25° C [10], and the assumption that D_{fo} decreases to the same extent, it was calculated that D_{fo} in 5×10^{-3} M $K_4Fe(CN)_6$ at 25° C is 5.9×10^{-10} m² s⁻¹. Since the dynamic viscosity of 5×10^{-3} M $K_4Fe(CN)_6$ is almost equal to that of water, i.e. $\eta = 0.89 \times 10^{-3} \text{ kg m}^{-1} \text{ s}^{-1}$ at 25° C, it was calculated that for this solution $D_{\text{fo}} \eta = 5.25 \times 10^{-13} \text{ kg m s}^{-2}$. This value is practically equal to that obtained by linear extrapolation of the $D_{\text{fo}} \eta / x_{\text{pe}}$ curve to $x_{\text{pe}} = 0$. This agreement indicates that the assumptions used are at least acceptable for practical application.

The diffusion coefficient for the chlorate ion, $D_{\rm ch}$, was calculated for NaClO₃ solution without supporting electrolyte. From the equivalent conductance of NaClO₃ solutions and from $D_{\rm ch}$ in infinite dilution, i.e. $1.72 \times 10^{-9} \,{\rm m}^2 \,{\rm s}^{-1}$ [11] and assuming the same concentration effect on the mobilities of both ions, viz Na⁺ and ClO₃⁻, it was calculated that $D_{\rm ch} = 1.67 \times 10^{-9} \,{\rm m}^2 \,{\rm s}^{-1}$ at 25°C for a 0.0376 M NaClO₃ solution. A 0.0376 M NaClO₃ solution containing a high concentration of NaClO₄ was used for the determination of the mass transfer coefficient for the chlorate ion at an oxygen-evolving electrode in perchlorate solution. Results of this work will be published separately.

Assuming the effect of the supporting electrolyte on the factor $D\eta$ for Fe(CN)⁴⁻₆ and ClO³₃ are equal, it can be deduced, that for a NaClO₃ solution containing NaClO₄ as supporting electrolyte,

$$\frac{D_{\rm ch}\eta}{(D_{\rm ch}\eta)_0} = 1 + 0.48 \, x_{\rm pe} \tag{5}$$

This relation shows the factor $D_{ch}\eta$ as a function of the mass fraction of sodium perchlorate.

References

- P. Gallone, *in* 'Ullmann's Encyclopedia of Industrial Chemistry', (edited by W. Gerhartz), 5th completely revised version, vol. A6 (1986) p. 515.
- [2] L. J. J. Janssen and P. D. L. van der Heyden, to be published.
- [3] R. C. Weast and M. J. Astle, 'Handbook of Chemistry and Physics', 61st edn, CRC Press, Inc., Boca Raton (1981).
- [4] E. W. Washburn, 'International Critical Tables of Numerical Data, Physics, Chemistry and Technology', vol 3, McGraw-Hill, New York, (1929) p. 87.
- [5] M. L. Miller and M. Doran, J. Phys. Chem. 60 (1956) 186.
- [6] A. N. Campbell, E. M. Kartzmark and B. G. Oliver, *Canad. J. Chem.* 44 (1966) 925.
- [7] H. Tollert and J. d'Ans, Angewandte Chemie 52 (1939) 472.
- [8] R. Greef, R. Peat, L. M. Peter, D. Pletcher and J. Robinson, 'Instrumental Methods in Electrochemistry', Ellis Horwood, Chichester (1985) p. 124.
- [9] R. Parsons, 'Handbook of Electrochemical Constants', Butterworths Scientific, London (1959) p. 78.
- [10] J. M. Kolthoff and J. J. Lingane, 'Polarography', vol. 1, 2nd edn, Interscience, New York (1952) p. 52.
- [11] D. J. Pickett, 'Electrochemical Reactor Design', Elsevier Scientific, Amsterdam (1977) p. 99.